Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(2): e2303981, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670224

RESUMO

Soft pressure sensors based on 3D microstructures exhibit high sensitivity in the low-pressure range, which is crucial for various wearable and soft touch applications. However, it is still a challenge to manufacture soft pressure sensors with sufficient sensitivity under small mechanical stimuli for wearable applications. This work presents a novel strategy for extremely sensitive pressure sensors based on the composite film with local changes in curved 3D carbon nanotube (CNT) structure via expandable microspheres. The sensitivity is significantly enhanced by the synergetic effects of heterogeneous contact of the microdome structure and changes of percolation network within the curved 3D CNT structure. The finite-element method simulation is used to comprehend the relationships between the sensitivity and mechanical/electrical behavior of microdome structure under the applied pressure. The sensor shows an excellent sensitivity (571.64 kPa-1 ) with fast response time (85 ms), great repeatability, and long-term stability. Using the developed sensor, a wireless wearable health monitoring system to avoid carpel tunnel syndrome is built, and a multi-array pressure sensor for realizing a variety of movements in real-time is demonstrated.

3.
ACS Nano ; 17(19): 18893-18904, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37643475

RESUMO

Personal wearable devices are considered important in advanced healthcare, military, and sports applications. Among them, e-textiles are the best candidates because of their intrinsic conformability without any additional device installation. However, e-textile manufacturing to date has a high process complexity and low design flexibility. Here, we report the direct laser writing of e-textiles by converting raw Kevlar textiles to electrically conductive laser-induced graphene (LIG) via femtosecond laser pulses in ambient air. The resulting LIG has high electrical conductivity and chemical reliability with a low sheet resistance of 2.86 Ω/□. Wearable multimodal e-textile sensors and supercapacitors are realized on different types of Kevlar textiles, including nonwoven, knit, and woven structures, by considering their structural textile characteristics. The nonwoven textile exhibits high mechanical stability, making it suitable for applications in temperature sensors and micro-supercapacitors. On the other hand, the knit textile possesses inherent spring-like stretchability, enabling its use in the fabrication of strain sensors for human motion detection. Additionally, the woven textile offers special sensitive pressure-sensing networks between the warp and weft parts, making it suitable for the fabrication of bending sensors used in detecting human voices. This direct laser synthesis of arbitrarily patterned LIGs from various textile structures could result in the facile realization of wearable electronic sensors and energy storage.

4.
Nano Lett ; 23(2): 398-406, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36595450

RESUMO

Mobile defects in solid-state materials play a significant role in memristive switching and energy-efficient neuromorphic computation. Techniques for confining and manipulating point defects may have great promise for low-dimensional memories. Here, we report the spontaneous gathering of oxygen vacancies at strain-relaxed crack walls in SrTiO3 thin films grown on DyScO3 substrates as a result of flexoelectricity. We found that electronic conductance at the crack walls was enhanced compared to the crack-free region, by a factor of 104. A switchable asymmetric diode-like feature was also observed, and the mechanism is discussed, based on the electrical migration of oxygen vacancy donors in the background of Sr-deficient acceptors forming n+-n or n-n+ junctions. By tracing the temporal relaxations of surface potential and lattice expansion of a formed region, we determine the diffusivity of mobile defects in crack walls to be 1.4 × 10-16 cm2/s, which is consistent with oxygen vacancy kinetics.

5.
Nat Nanotechnol ; 17(11): 1198-1205, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36302962

RESUMO

Artificial muscles are indispensable components for next-generation robotics capable of mimicking sophisticated movements of living systems. However, an optimal combination of actuation parameters, including strain, stress, energy density and high mechanical strength, is required for their practical applications. Here we report mammalian-skeletal-muscle-inspired single fibres and bundles with large and strong contractive actuation. The use of exfoliated graphene fillers within a uniaxial liquid crystalline matrix enables photothermal actuation with large work capacity and rapid response. Moreover, the reversible percolation of graphene fillers induced by the thermodynamic conformational transition of mesoscale structures can be in situ monitored by electrical switching. Such a dynamic percolation behaviour effectively strengthens the mechanical properties of the actuator fibres, particularly in the contracted actuation state, enabling mammalian-muscle-like reliable reversible actuation. Taking advantage of a mechanically compliant fibre structure, smart actuators are readily integrated into strong bundles as well as high-power soft robotics with light-driven remote control.


Assuntos
Grafite , Robótica , Animais , Humanos , Grafite/química , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...